Nếu \(\sqrt{x}\) là một số hữa tỉ thì có phân số \(\dfrac{a}{b}\) tối giản sao cho :
\(\sqrt{x}=\dfrac{a}{b}\Leftrightarrow x=\dfrac{a^2}{b^2}\).
Do phân số \(\dfrac{a}{b}\) là phân số tối giản nên \(\left(a,b\right)=1\) (a và b là hai số nguyên tố cùng nhau) nên \(a^2\) và \(b^2\) cũng là hai số nguyên tố cùng nhau.
Giả sử ngược lại nếu \(a^2\) và \(b^2\) không là hai số nguyên tố cùng nhau. Gọi d là ước chung của \(a^2\) và \(b^2\) (d > 1).
Do \(a^2\) và \(b^2\) là hai số chính phương nên a, b cùng chia hết cho d (mâu thuẫn).
Vậy \(a^2\) và \(b^2\) cũng là hai số nguyên tố cùng nhau nên phân số \(\dfrac{a^2}{b^2}\) tối giản. Ta có điều phải chứng minh.