\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
\(A< \frac{9}{10}\Rightarrow A< 1\left(đpcm\right)\)
Viết hơi rắc rối, ko hiểu=ib.
Ta có:
A=1/4+1/9+1/16+...+1/100
=>A=1/22+1/32+1/42+...+1/102
=>A<1/(1.2)+1/(2.3)+1/(3.4)+...+1/(9.10) =1-1/2+1/2-1/3+...+1/9-1/10
=1-1/10=9/10<1
=>A<1(đpcm)