Ta có:M=(2+22+23+24+25)+..........+(296+297+298+299+2100)
M=2.(1+2+22+23+24)+..................+296.(1+2+22+23+24)
M=2.31+.............+296.31
M=(2+26+............+296).31 chia hết cho 31(đpcm)
Ta có : \(M=2+2^2+2^3+...+2^{100}\)
=> \(M=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)
=> \(M=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
=> \(M=2.31+2^6.31+...+2^{96}.31\)
=> \(M=31\left(2+2^6+...+2^{96}\right)\)
Ta có 31 chia hết cho 31 => M chia hết cho 31
M=2+22+23+24+25+...+2100
M=2(1+2+4+8+16)+...+296(1+2+4+8+16)
M=2.31+...+296.31
M=(2+26+...+296).31
Vì (2+26+...+296).31 chia hết cho 31 nên M chia hết cho 31
Vậy M chia hết cho 31