1/2^2+1/3^2+...+1/8^2>1/2-1/3+1/3-1/4+...+1/8-1/9=1/2-1/9=7/18>6/18=1/3(1)
1/2^2+1/3^2+...+1/8^2<1-1/2+1/2-1/3+...+1/7-1/8=7/8<1(2)
Từ (1), (2) suy ra 1/3<1/2^2+1/3^2+...+1/8^2<1
1/2^2+1/3^2+...+1/8^2>1/2-1/3+1/3-1/4+...+1/8-1/9=1/2-1/9=7/18>6/18=1/3(1)
1/2^2+1/3^2+...+1/8^2<1-1/2+1/2-1/3+...+1/7-1/8=7/8<1(2)
Từ (1), (2) suy ra 1/3<1/2^2+1/3^2+...+1/8^2<1
chứng tỏ rằng:
a)3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4019/ 2009^2.2010^2 < 1
b) (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2
chứng tỏ rằng: (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2
chứng tỏ rằng E >F với E=(1+5+5^2+....+5^9)/(1+5+...+5^8) ; F=(1+3+...+3^9)/(1+3+...+3^8)
Cho M= 1/2^2+1/2^4+1/2^6+1/2^8+..........+1/2^98+1/2^100. Chứng tỏ M <\(\frac{1}{3}\)
a) Chứng tỏ rằng: B=1/22+1/32+1/42+1/52+1/62+1/72+1/82 < 1
b) Tinh nhanh: A= 1+1/2 (1+2) +1/3 (1+2+3)+1/4(1+2+3+4)+......+1/16(1+2+3+...+16)
chứng tỏ rằng:M=1/3+1/3^2+1/3^3+....+1/3^99 <1/2
Chứng tỏ:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}< \dfrac{2}{3}\)
a) 1/3 + 1/2 : x = -4
b) 2. ( x - 2)^2= 49/8
bài 2:
So sánh 3^100 và 5^200
Bài 3:
chứng tỏ rằng: 75^20 = 42^10 . 25^11
chứng tỏ rằng : M=1/3+1/3^2+1/3^3+......+1/3^99 <1/2