\(4-\sqrt{15}=\frac{1}{4+\sqrt{15}}\)
Đặt \(t=4+\sqrt{15}\)
Ta chứng minh \(t^n+\frac{1}{t^n}\in N\text{ (*) }\forall n\in N\text{*}.\)
\(+n=1:\text{ }t+\frac{1}{t}=4+\sqrt{15}+4-\sqrt{15}=8\in N\)
\(+n=2:\text{ }t^2+\frac{1}{t^2}=\left(t+\frac{1}{t}\right)^2-2\in N\)
Giả sử (*) đúng với n = k-1 và n = k, tức là \(t^{k-1}+\frac{1}{t^{k-1}}\in N;\text{ }t^k+\frac{1}{t^k}\in N\).
Ta chứng minh (*) đúng với n = k+1.
Thật vậy, ta có: \(\left(t+\frac{1}{t}\right)\left(t^k+\frac{1}{t^k}\right)\in N\Rightarrow t^{k+1}+\frac{1}{t^{k+1}}+t^{k-1}+\frac{1}{t^{k-1}}\in N\)
\(\Rightarrow t^{k+1}+\frac{1}{t^{k+1}}\in N\text{ }\left(do\text{ }t^{k-1}+\frac{1}{t^{k-1}}\in N\right)\)
Vậy theo nguyên lý quy nạp, (*) đúng với mọi số tự nhiên n.
Làm tương tự như trên, ta cũng chứng minh được \(t^n+\frac{1}{t^n}\text{ }\vdots\text{ }2\text{ }\forall n\in N\text{*}\)