\(VT=\Sigma\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}\ge\Sigma\left(x+y\right)\left(\sqrt{xy}+z\right)\)
\(=\Sigma\left(x+y\right)\sqrt{xy}+\Sigma\left(x+y\right)z\ge2\Sigma xy+\Sigma\left(xz+yz\right)=4\left(xy+yz+zx\right)=VP\)
\(VT=\Sigma\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}\ge\Sigma\left(x+y\right)\left(\sqrt{xy}+z\right)\)
\(=\Sigma\left(x+y\right)\sqrt{xy}+\Sigma\left(x+y\right)z\ge2\Sigma xy+\Sigma\left(xz+yz\right)=4\left(xy+yz+zx\right)=VP\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
Cho các số thực dương \(x,y,z\) thỏa mãn: \(xy+yz+xz=1\). Hãy tính giá trị biểu thức: \(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho ba số dương x; y; z. CMR: \(x^2\left(x-\sqrt{yz}\right)+y^2\left(y-\sqrt{xz}\right)+z^2\left(z-\sqrt{xy}\right)\ge0\)
Cho x, y, z là các số thực dương thõa mãn xy + yz + zx = 1
a) Chứng minh rằng: \(1+x^2=\left(x+y\right)\left(x+z\right)\)
b) Tính giá trị biểu thức P = \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
cho \(x;y;z>0\)
\(xy+yz+xz=xyz\)
và \(\left(x+y\right)\left(\frac{1}{z}+\frac{1}{xy}\right)+\left(y+z\right)\left(\frac{1}{x}+\frac{1}{yz}\right)+\left(x+z\right)\left(\frac{1}{y}+\frac{1}{xz}\right)=1\)
tính giá trị của biểu thức
\(A=\sqrt{\frac{\left(2x+yz\right)\left(2y+xz\right)}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{\left(2y+xz\right)\left(2z+xy\right)}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\frac{\left(2z+xy\right)\left(2x+yz\right)}{\left(x+y\right)\left(y+z\right)}}\)
Cho các số dương x,y,z thỏa mãn x2+y2+z2=1.
Chứng minh: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)
cho 3 số dương x,y,z thỏa mãn xy+yz+xz =1
tính T =\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}\)
\(P=\frac{x^2}{1+x\left(\sqrt{x^2+1}+x\right)}+\frac{y^2}{1+y\left(\sqrt{y^2+1}+y\right)}+\frac{z^2}{1+z\left(\sqrt{z^2+1}+z\right)}\)
tìm giá trị nhỏ nhất của P biết: xy+yz+xz=1; x,y,z là các số thực dương
Cho 3 số dương x,y,z thỏa mãn: xy+yz+zx=1. Chứng minh rằng:
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+z^2\right)\left(1+y^2\right)}{1+z^2}}=2\)