Sửa đề: \(S_2=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}<\frac{1}{1\cdot2}=1-\frac12\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}=\frac12-\frac13\)
...
\(\frac{1}{50^2}<\frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)
Do đó: \(S_2=\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{50^2}<1-\frac12+\frac12-\frac13+\cdots+\frac{1}{49}-\frac{1}{50}\)
=>\(S_2\) <1(ĐPCM)