(x+y)^2+(x-y)^2
=x^2+2xy+y^2+x^2-2xy+y^2
=2x^2+2y^2
=2(x^2+y^2)
(x+y)^2+(x-y)^2
=x^2+2xy+y^2+x^2-2xy+y^2
=2x^2+2y^2
=2(x^2+y^2)
Chứng minh rằng\(\left(x+y^2\right)\left(y+x^2\right)-\left(x+y\right)\left(x^2+y^2\right)=\left(xy-x\right)\left(xy-y\right)\)
Cho \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(x+y-2z\right)^2+\left(y+z-2x\right)^2+\left(x+z-2y\right)^2\)
Chứng minh rằng: x=y=z
chứng minh rằng : neeus \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)
thif x=y=z
Chứng minh rằng:\(\left(2x^2-y\right)\left(2y^2-x\right)+\left(x+y\right)\left(2x^2+2y^2\right)=\left(2xy+x\right)\left(2xy+y\right)\)
Chứng minh rằng: Nếu \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\) thì \(x=y=z\)
2. Chứng minh đẳng thức:
\(a,\)\(\left(x+y\right)^2-y^2=x.\left(x+2y\right)\)
\(b,\)\(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2.\left(x-y\right)^2\)
chứng minh đẳng thức:
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)
Chứng minh đa thức nhau ko phụ thuộc vào biến
\(\dfrac{\left(x+y\right)^2}{x}.\left[\dfrac{x}{\left(x+y\right)^2}-\dfrac{x}{x^2-y^2}\right]-\dfrac{5x-3y}{y-x}\)