a) \(x^2+4x+10\)
\(=x^2+4x+4+6\)
\(=\left(x+2\right)^2+6\)
Mà: \(\left(x+2\right)^2+6>0\forall x\)
\(\Rightarrow x^2+4x+10>0\forall x\)
b) \(x^2-6x+15\)
\(=x^2-6x+9+6\)
\(=\left(x-3\right)^2+6\)
Mà: \(\left(x-3\right)^2+6>0\forall x\)
\(\Rightarrow x^2-6x+16>0\forall x\)
c) \(-x^2+2x-5\)
\(=-\left(x^2-2x+5\right)\)
\(=-\left(x^2-2x+1+4\right)\)
\(=-\left(x-1\right)^2-4\)
Mà: \(-\left(x-1\right)^2-4< 0\forall x\)
\(\Rightarrow-x^2+2x-5< 0\forall x\)