Lời giải:
Ta có:
$x^4-x+1=(x^4-x^2+\frac{1}{4})+(x^2-x+\frac{1}{4})+\frac{1}{2}$
$=(x^2-\frac{1}{2})^2+(x-\frac{1}{2})^2+\frac{1}{2}$
$\geq 0+0+\frac{1}{2}>0$
Ta có đpcm.
Ta có: \(x^4-x+1\)
\(=\left(x^4-x^2+\dfrac{1}{4}\right)+\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}\)
\(=\left(x^2-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)