Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pham thuy trang

chứng minh với mọi số a,b  ta có a2 + 5b2 -4ab + 2a - 6b + 3 > 0

Hoàng Phúc
2 tháng 8 2016 lúc 16:29

\(a^2+5b^2-4ab+2a-6b+3\)

\(=a^2-4ab+2a+5b^2-6b+3\)

\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)

\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)

\(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b)  (đpcm)


Các câu hỏi tương tự
Anh Aries
Xem chi tiết
Cíuuuuuuuuuu
Xem chi tiết
Cíuuuuuuuuuu
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Trương Ngọc Anh Tuấn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết