Cho a, b là các số thực dương mà a3 +b3 = a−b. Chứng minh rằng a2 +4b2 < 1.
Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 200; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2
với a và b là các số nguyên dương sao cho a+1 và b+2009 là các số chia hết cho 6 chứng minh rằng số 4a +a+b cũng chia hết cho 6
chứng minh các đẳng thức sau
(a-b)2=a2-2ab+b2
(a-b)(a+b)=a2-b2
(a+b)3=a3+3a2b+3ab2+b3
Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 20độ ; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2
ai bt làm giúp mình vs
Chứng minh rằng với a, b là các số dương thì \(a^3+b^3\ge ab\left(a+b\right)\)
CMR:
a) a3+b3+c3⋮9 thì abc⋮9 (a, b, c nguyên)
b) CM trong 5 số nguyên dương đôi 1 phân biệt luôn tồn tại 4 số có tổng là hợp số
cho a b c là các số nguyên dương thỏa mãn c + 1/b = a + b/a chứng minh ab là lập phương của 1 số nguyên dương