Ta có :
1/22 < 1/1.2 = 1/1 - 1/2
1/32 < 1/2.3 = 1/2 - 1/3
..........
1/1002 < 1/99.100 = 1/99 - 1/100
=> 1/22+1/32+1/42+......+1/1002 < 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100 = 1 - 1/100 < 1
=> 1/22+1/32+1/42+......+1/1002 < 1 ( dpcm )
Gọi tổng trên bằng A. Ta có
A<1/10^2 x 100=1
Nên A<1
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
.......
\(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\)
=> Đpcm