Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hyun mau

chứng minh rằng với n chẵn thì A= n/12 +n2/8 + n3/24 là số nguyên

Xì-Tin Pơ
1 tháng 8 2016 lúc 9:11

A=a^3/24+a^2/8+a/12 
= (a^3+ 3 a^2+ 2) /24 = a(a+1)(a+2)/24 
ta cần CM a(a+1)(a+2) chia hết cho 24 
để dễ hiểu mình sẽ trình bày cụ thể, còn nếu muốn rút gọn thì b có thể tự trình bày lại nhá :D 
do a chắn => a=4k hoặc a=4k+2 (k thuộc Z) 
TH1: a=4k; a+2=4k+2 
=> a(a+1)(a+2) chia hết cho 4*2=8 
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1 
=> a(a+1)(a+2) chia hết cho 24 

TH2: a=4k+2, a+2= 4k+4 (k thuộc Z) 
=> a(a+1)(a+2) chia hết cho 4*2=8 
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1 
=> a(a+1)(a+2) chia hết cho 24 

vậy A=a^3/24+a^2/8+a/12 luôn có giá trị nguyên 

Võ Nhật Từ Vy
1 tháng 8 2016 lúc 9:18

1) Đặt a=2k vì a chẵn 
=>A = k^3/3+k^2/2+k/6 = (2k^3+3k^2+k)/6 
= (2(k-1)k(k+1) + 3k(k+1))/6 
=(k-1)k(k+1)/3 + k(k+1)/2 
(k-1)k(k+1) là tích của ba số nguyên liên tiếp nên chia hết cho 3 =>(k-1)k(k+1)/3 nguyên 
k(k+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 =>k(k+1)/2 nguyên 
=>A nguyên


Các câu hỏi tương tự
phan gia huy
Xem chi tiết
Nguyễn Khánh Duy
Xem chi tiết
Nguyễn kim ngân
Xem chi tiết
huongkarry
Xem chi tiết
Nguyên Lê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ngọc Hà
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết