\(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0=>A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) \(\left(đpcm\right)\)
\(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0=>A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) \(\left(đpcm\right)\)
Chứng minh rằng với mọi x, ta có A = (x – 1)(x – 3) + 2 > 0 với mọi x.
chứng minh rằng:
A\(=x^2+x+1>0\) với mọi x
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác ± 1, biểu thức:
x + 2 x - 1 x 3 2 x + 2 + 1 - 8 x + 7 2 x 2 - 2 luôn luôn có giá trị dương.
a) Cho biểu thức E = x + 1 x 2 x 2 + 1 x 2 + 2 x + 1 1 x + 1 .
Chứng minh rằng: Giá trị của biểu thức E luôn bằng 1 với mọi giá trị x ≠ 0 và x ≠ - 1
b) Cho biểu thức F = x + 1 2 x − 2 + 3 x 2 − 1 − x + 3 2 x + 2 . 4 x 2 − 4 5 .
Chứng minh rằng với những giá trị của x hàm F xác định thì giá trị của F không phụ thuộc vào x.
a ) Chứng minh rằng : A = x2 - 2x + 2 > 0 với mọi x thuộc R
b ) Chứng minh rằng x - x2 - 3 < 0 với mọi x thuộc R
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
Chứng minh rằng: x^2 + x + 1 >0, với mọi x
Bài 1 : Tìm x
a, (7x-3)^2 - 5x (9x+2) - 4x^2 = 18
b, (x-7)^2 -9 (x+4)^2 = 0
c,(2x+1)^2+(4x-1) (x+5) =36
Bài 2: Chứng minh rằng:
a, x^2 -12x +39> 0 với Mọi x
b,17- 8x+x^2>0 với mọi x
c, -x^2 +6x -11<0 với mọi x
d,-x^2 +18x -83<0 với mọi x
bài 3
chứng minh rằng
a, x^2 + x +1 > 0 với mọi x
b, -4x^2 - 4x - 2 < 0 với mọi x
chứng minh rằng với mọi x,y lớn hơn 0 thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}>=\frac{10}{\left(x+y\right)^2}\)