Gọi ƯCLN(2n + 3; 2n + 1) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+1⋮d\end{cases}}\)
=> 2n + 3 - (2n + 1) \(⋮\)d
=> 2n + 3 - 2n - 1 \(⋮\)d
=> 2 \(⋮\)d => d ∈ {1;2}
Do 2n + 1 lẻ => d lẻ => d = 1
Vậy ∀ x ∈ N thì 2n + 3 và 2n + 1 là 2 số nguyên tố cùng nhau