\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^{10}.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\)chia hết cho 10
Đặt D=3^n+2 - 2^n+2 + 3^n + 2^n
=(3^n+2 + 3^n) - (2^n+2 + 2^n)
=(3^n . 3^2 + 3^n) - (2^n . 2^2 + 2 ^n)
=3^n . (3^2 + 1) - 2^n . (2^2 + 1)
=3^n . 10 - 2 ^n .5
=3^n .10 - 2^n-1 .10
=(3^n - 2^n-1) . 10 chia hết cho 10 (ĐPCM)
Chúc bạn học tốt!
3^n+2-2^n+2+3^n-2^n
=3^n*3^2-2^n*2^2+3^n*1-2^n*1 (1)
=3^n*(3^2+1)-2^n*(2^2+1)
=3^n*10-2^n*5
=3^n*10-2^n-1*10
Có 10 chia het cho 10 nen (1) dung
Suy ra dieu phai chung minh
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(3^{n+2}-2^{n+2}+3^n-2^n\left(n\inℕ\right)\)
\(=3^{n+2}+3^n-2^{n+2}-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)
vì \(10⋮10\Rightarrow10\left(3^n-2^{n-1}\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
vậy......................
3^n+2-2^n+2+3^n-2^n
=3^n*3^2-2^n*2^2+3^n*1-2^n*1 (1)
=3^n*(3^2+1)-2^n*(2^2+1)
=3^n*10-2^n*5
=3^n*10-2^n-1*10
Có 10 chia het cho 10 nen (1) dung
Suy ra 3^n+2-2^n+2+3^n-2^n:10( dpcm)
:3
Toán lớp 8 mà
sao chúng nóa học nhanh quá z trời !!!!!!!!!
Đây là toán nâng cao lớp 8 mới đúng chớ. huhu
\(3n^2+2-2^{n+2}+3^n-2^n\)
=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
=\(3^n.10-2^{n-1}.10⋮10\)
Vậy \(3n^2+2-2^{n+2}+3^n-2^n\)\(⋮\)10