=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
Chứng minh rằng: Mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Chứng minh rằng: Với mọi số nguyên dương n thì:
3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10
toán hsg lớp 7:chứng minh rằng với mọi số nguyên dương n thì : 3^n+2 -2^n+2 +3^n-2^n chia hết cho 10
Chứng minh rằng: Với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
chứng minh rằng :với mọi số nguyên dương n thì :\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
chứng minh rằng với mọi số nguyên dương n thì :3(n+2)-2(n+2)+3n-2n chia hết cho 10 ?
Chứng minh rằng với mọi số nguyên dương n, thì:
3^n+2 - 2^n+2 + 3^n -2^n chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n thì 3n+2-2n+2+3n-2n chia hết cho 10