a2-2a+1+4b2-12b+9+3c2-6c+3+1>0
(luôn đúng)
BĐT ban đầu đúng
a2-2a+1+4b2-12b+9+3c2-6c+3+1>0
(luôn đúng)
BĐT ban đầu đúng
Chứng minh rằng với mọi a,b,c ta có a2+4b2+3c2>2a+12b+6c-14
Chứng minh rằng với mọi số a,b,c ta luôn có :
a) a2 + 5b2 - 4ab + 2a - 6b + 3 > 0
b) a2 + 2b - 2ab + 2a - 4b + 2 >0
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
Cho a, b, c thỏa \(\frac{a}{2a+3b+4c}+\frac{3b}{6b+4c+a}+\frac{4c}{8c+a+3b}=\frac{3}{4}.\)
Chứng minh rằng: \(\frac{a^2}{2a+3b+4c}+\frac{9b^2}{6b+4c+a}+\frac{16c^2}{8c+a+3b}=\frac{a+3b+4c}{4}\)
Chứng minh rằng các đa thức sau luôn khong âm với mọi giá trị của biến
a) x2+y2+2x+6y+10
b) 9b2-6b+4c2+1
Chứng minh rằng với mọi số thực a, b ta luôn có:
a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
b)\(a^2+b^2+c^2\ge ab+bc+ca\)
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
CHỨNG MINH RẰNG VỚI MỌI SỐ A VÀ B TA LUÔN CÓ \(A^2+B^2+1\ge A.B+ A+B\)
Một bài rất easy để dùng sos đây ạ!
1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)
Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)
Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D
Bài toán 2: \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)