có lẽ là AM-GM ngược dấu, bn thử đi nhé giờ mk bận rồi
chẳng biết có sai đề không nữa không dự được dấu bằng xảy ra
có lẽ là AM-GM ngược dấu, bn thử đi nhé giờ mk bận rồi
chẳng biết có sai đề không nữa không dự được dấu bằng xảy ra
Chứng ming rằng với mọi số dương a,b vad c thỏa mã a+b+c=3 thì \(\frac{a^2b}{2a+b}+\frac{b^2c}{2b+c}+\frac{c^2a}{2c+a}\le\frac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\). Chứng minh rằng:
\(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\ge\frac{\sqrt{3}}{3}\).
Cho a, b, c thỏa mãn \(\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}=\frac{3}{4}.\)
Chứng minh rằng \(\frac{a^2}{2a+b+c}+\frac{b^2}{2b+c+a}+\frac{c^2}{2c+a+b}=\frac{a+b+c}{4}.\)
cho ba số dương a,b và c thỏa mãn abc = 1 . Chứng minh rằng:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\)
Cho a,b,c là các số dương không âm thỏa mãn : \(a^2+b^2+c^2\) = 3
Chứng minh rằng : \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=16\)
Chứng minh rằng:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{8}{3}\)
#giúp mình nhé! Cảm ơn *cúi*
Cho a,b,c là các số thực dương. Chứng minh rằng \(\left(\frac{a+2b}{a+2c}\right)^3+\left(\frac{b+2c}{b+2a}\right)^3+\left(\frac{c+2a}{c+2b}\right)^3\ge3\)
Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng $\frac{a}{2a+b^{2}}+\frac{b}{2b+c^{2}}+\frac{c}{2c+a^{2}}\leq \frac{1}{7}\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )$