\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ab}+\sqrt{cd}\)
\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ab+2\sqrt{abcd}+cd\)
\(\Leftrightarrow ac+ad+bc+bd\ge ab+2\sqrt{abcd}+cd\)
\(\Leftrightarrow ac-2\sqrt{abcd}+bd\ge0\)
\(\Leftrightarrow\left(\sqrt{ac}-\sqrt{bd}\right)^2\ge0\)\(\text{(luôn đúng)}\)