Hoàng Triều Minh Lê vậy con làm giúp pa đi
Hoàng Triều Minh Lê vậy con làm giúp pa đi
chứng minh \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\)l\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)l
Cho ba số a; b; c đôi một phân biệt. Chứng Minh Rằng:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Chứng minh rằng với a,b,c > 0 thì \(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Help me!
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0;b\ne c\right)\)) chứng minh rằng : \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0,b\ne c\right)\).Chứng minh rằng\(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b},\right)\left(a,b,c\ne0,b\ne c\right)\) Chứng minh rằng: \(\frac{a}{b}=\frac{a-b}{c-b}\)
Với a,b,c là các số dương. Chứng minh rằng
a) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(1\right)\) b)\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(2\right)\)
1/ cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b)\(\frac{a,d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho \(a.b=c^2\)chứng minh : \(\frac{a}{b}=\frac{\left(2a+3c\right)^2}{\left(2c+3b\right)^2}\)
CMR
\(\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)