chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
1. C/m rằng tổng của hai số chính phương lẻ không là số chính phương.
2. Tìm số nguyên tố p để 4p+1 là số chính phương.
3. C/m rằng nếu n+1 và 2n+1(n thuộc N) đều là số chính phương thì n chia hết cho 24.
4. C/m rằng nếu 2n+1 và 3n+1(n thuộc N) đều là số chính phương thì n chia hết cho 40
cho hai số chính phương liên tiếp.Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ
Chứng minh rằng nếu hiệu các lập phương của 2 số nguyên liên tiếp là bình phương của một số tự nhiên n thì n là tổng 2 số chính phương liên tiếp.
Tổng của các số nguyên dương x, sao cho x+56 và x+113 đều là số chính phương
Cho A= (n-1).(n-3).(n-4).(n-6)+9. Chứng minh a luôn là số chính phương với mọi giá trị nguyên của x
Tổng của các số nguyên dương x sao cho x+56, x+113 đều là số chính phương
Bài 1:
Tìm số tự nhiên n sao cho n + 24 và n - 65 đều là hai số chính phương
Bài 2:
Cho A = p4 trong đó p là số nguyên tố
a) A có những ước dương nào?
b) Chứng minh tổng các ước dương của A là một số chính phương
Bài 3:
Cho 3 số nguyên x ; y ; z sao cho x = y + z. Chứng minh rằng 2(xy-yz+zx) là tổng của 3 số chính phương