Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng::
\(\frac{4a^3}{\left(1+b\right)\left(1+c\right)}+\frac{4b^3}{\left(1+c\right)\left(1+a\right)}+\frac{4c^3}{\left(1+a\right)\left(1+b\right)}\ge3\)
Chứng minh rằng nếu a, b là các số thực thì \(\left[a+b\right]\ge\left[a\right]+\left[b\right]\)
Cho các số thực dương a,b,c thỏa mãn \(abc=1\)Chứng minh rằng:
\(\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(b+1\right)\left(b+2\right)}+\frac{1}{\left(c+1\right)\left(c+2\right)}\ge\frac{1}{2}\)
Cho tam giác ABC có S=\(\frac{\left(a-b+c\right)\left(a+b-c\right)sinA}{2}\).Tính góc A
Chứng minh rằng:
\(\frac{sin\left(x\right)+sin\left(\frac{x}{2}\right)}{1+cos\left(x\right)+cos\left(\frac{x}{2}\right)}=tan\left(\frac{x}{2}\right)\)
Cho a,b,c là các số thực thuộc đoạn [0;1]. Chứng minh rằng:
\(\sqrt{a^3b^3c^3}+\sqrt{\left(1-a^2\right)\left(1-b^2\right)\left(1-c^2\right)\left(1-abc\right)}\le1\)
Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Cho a, b, c dương. Chứng minh rằng:
\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}-\sqrt[4]{3}\ge\dfrac{\sqrt[4]{243}}{2+abc}\)
Cho a,b,c là các số thực không âm bất kì, chứng minh rằng:
\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)