Cho a,b,c là độ dài 3 cạnh của một tam giác . Chứng minh \(a^2+b^2+c^2\le2\left(ab+bc+ca\right)\)
chứng minh rằng (ab+bc+ca)/2 <c^2 với a,b là 2 cạnh góc vuông của tam giác ABC còn c là cạnh huyền
chứng minh rằng (ab+bc+ca)/2 <c^2 với a,b là 2 cạnh góc vuông của tam giác ABC còn c là cạnh huyền
Cho a,b,c là độ dài 3 cạnh của 1 tam giác và a+b+c=2 . Chứng minh:
\(ab+bc+ca>abc+1\)
Cho a, b, c là độ dài 3 cạnh tam giác. Chứng minh rằng :
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\)
Giả sử a;b;c là dộ dài 3 cạnh của 1 tam giác. CMR :
\(\frac{1}{\sqrt{ab+ca}}+\frac{1}{\sqrt{bc+ab}}+\frac{1}{\sqrt{ca+bc}}\ge\frac{1}{\sqrt{a^2+bc}}+\frac{1}{\sqrt{b^2+ca}}+\frac{1}{\sqrt{c^2+ab}}\)
cho tam giác abc vuông tại a. gọi a,b,c lần lượt là chiều dài các cạnh bc, ca,ab. chứng minh Sabc=1/4(a+b+c)(b+c-a)
cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
Cho a,b,c là độ dài 3 cạnh của một tam giác.Chứng minh:\(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\)