Chứng minh rằng nếu a2 =bc thì : a+b/a-b=c+a/c-a
Điều đảo lại có đúng không
Chứng minh rằng :
Nếu \(a^2=c.b\)thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Điều ngược lại có đúng không ? Vì sao ?
chứng minh rằng:\(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
liệu điều đảo lại có đúng không
Cho a+b/a-b = c+a/c-a với a khác b ; a khác c. Chứng minh a^2=bc. Điều ngược lại có đúng không? Vì sao?
C/m rằng nếu a^2=bc thì (a+b)/(a-b)=(c+a)/(c-a)
Nếu đảo lại có đúng ko??
Cho 2 số hữu tỉ\(\dfrac{a}{b}\)và\(\dfrac{c}{d}\)(b>0,d>0). Chứng tỏ rằng:
a, Nếu\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)thì ad < bc
b. Nếu ad<bc thì \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
Chứng minh rằng
nếu \(a^2=b.c\)thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Điều ngược lại có đúng không?
Chứng minh rằng nếu \(\dfrac{a}{b}\)=\(\dfrac{b}{d}\) thì \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\)
Cho hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(a,b,c,d ϵ Z, b,d ≠ 0) Chứng tỏ rằng:
a, Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc
b, Nếu ad < bc thì \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)