\(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+2ab+b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow a=b\) (đpcm)
`2(a^2 + b^2) = (a+b)^2`
`2a^2 + 2b^2 = a^2 + 2ab + b^2`
`a^2 + b^2 = 2ab`
`-> a^2 - 2ab + b^2 = 0`
`-> (a-b)^2 = 0`
Vì `(a-b)^2 >=0 forall a, b in RR`.
`-> a - b = 0`
`-> a = b`