Giải tiếp mình với !!!!!
1. Cho x,y là hai số dương thỏa x+y=1. C/M \(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)
2. Chứng minh rằng nếu \(0< b< a\le2\)và \(2ba\le2b+a\)thì \(a^2+b^2\le5\)
3. Cho ba số a,b,c dương thỏa abc=1. Chứng minh:
\(\left(a+\frac{1}{b}-1\right)\left(b+\frac{1}{c}-1\right)\left(c+\frac{1}{a}-1\right)\le1\)
4. Cho a,b,c,d dương thỏa: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}=3\)
Chứng minh: \(abcd\le81\)
cho \(0\le a,b,c\le2\)và a+b+c=3
chứng minh \(^{a^3+b^3+c^3\le5}\)
Cho \(0\le a,b,c\le2\)và a + b + c = 3 . CMR : \(a^2+b^2+c^2\le5\).
Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2\le3\). Chứng minh rằng: \(\sqrt{5a^2+4bc}+2\sqrt{bc}\le5\)
Cho a;b;c \(\ne\)0
M=\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}+\frac{a^2+b^2-c^2}{2ab}\)
Chứng minh rằng : a. Nếu M=1 thì trong 3 phân thức của M có 2 phân thúc =1 và 1 phân thức còn lại =-1
b. Nếu M>1 thì a,b,c là 3 cạnh của 1 tam giác (a;b;c>0)
Chứng minh rằng :
a, Nếu \(a^2+b^2=2ab\) thì a=b
b, Nếu \(a^3+b^3+c^3=3abc\) và a,b,c là các số dương thì a=b=c
c, Nếu \(a^4+b^4+c^4+d^4=4abcd\) và a,b,c,d là các số dương thì a=b=c=d
Cho các số thực a,b,c thỏa mãn: \(-1\le a\le2;-1\le b\le2;-1\le c\le2\) và \(a+b+c=0\)
Chứng minh \(a^2+b^2+c^2\le6\)
với a,b\(\in Z\). Chứng minh rằng: nếu \(a^2+4b^2-2ab⋮11\) thì\(4a^3-b^3⋮11\)
chứng minh rằng nếu hai phương trình:x^2+ax+b=0 và x^2+cx+b=0 có nghiệm chung thì: (b-d)^2+(a-c)(ad-bc)=0