Lời giải:
Ta có: $n^5-2011n=(n^5-n)-2010n$
$=n(n^4-1)-2010n=n(n^2-1)(n^2+1)-2010n$
$=n(n-1)(n+1)(n^2+1)-2010n$
Vì $n, n-1, n+1$ là 3 số nguyên liên tiếp nên chắc chắn tồn tại ít nhất 1 số chẵn, và tồn tại ít nhất 1 số chia hết cho $3$
$\Rightarrow n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$ chia hết cho $2$ và chia hết cho $3$ $(*)$
Mặt khác, ta biết 1 số chính phương khi chia cho $5$ có thể có dư là $0,1,4$
Nếu $n^2$ chia $5$ dư $0$ thì $n\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$
Nếu $n^2$ chia $5$ dư $1$ thì $n^2-1\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$
Nếu $n^2$ chia $5$ dư $4$ thì $n^2+1\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$ $(**)$
Từ $(**); (*)$ mà $(2,3,5)$ đôi một nguyên tố cùng nhau nên $n(n^2-1)(n^2+1)\vdots 30$
Mà $2010n\vdots 30$ do $2010\vdots 30$
Do đó $n^5-2011n=n(n^2-1)(n^2+1)-2010n\vdots 30$
Ta có đpcm.
Tóm lại $n(n^2-1)(n^2+1)\vdots 5$