Lời giải:
Để \(9^n+1\vdots 2016\) thì trước hết \(9^n+1\) phải chia hết cho $9$ vì $2016$ chia hết cho $9$
Mà hiển nhiên \(9^n+1\not\vdots 9\) với mọi số tự nhiên $n$
Do đó \(9^n+1\not\vdots 2016, \forall n\in\mathbb{N}\) (đpcm)
Lời giải:
Để \(9^n+1\vdots 2016\) thì trước hết \(9^n+1\) phải chia hết cho $9$ vì $2016$ chia hết cho $9$
Mà hiển nhiên \(9^n+1\not\vdots 9\) với mọi số tự nhiên $n$
Do đó \(9^n+1\not\vdots 2016, \forall n\in\mathbb{N}\) (đpcm)
Chứng minh rằng n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.
Chứng minh rằng A=n3+(n+1)3+(n+2)3 chia hết cho 9 với mọi n ϵ N*
Chứng minh rằng \(A=n^3\left(n^2-7\right)^2-36n\) chia hết cho 5040 với mọi số tự nhiên n
chứng minh 5^n+2+2^5n+1 chia hết cho 27 với mọi số tự nhiên n
Chứng minh rằng 22n(22n+1-1)-1 chia hết cho 9 với mọi n>1
chứng minh rằng với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\)chia hết cho\(\left(x+1\right)\left(x-1\right)^2\)
Chứng minh rằng với mọi số tự nhiên m, n thì :
\(x^{6m+4}+x^{6n+2}+1\) chia hết cho \(x^4+x^2+1\)
Chứng minh rằng n2- n chia hết cho 6 với mọi số nguyên n
chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên