Lời giải:
$n(n+1)\vdots 2$ do là tích của 2 số tự nhiên liên tiếp
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ
$\Rightarrow n^2+n+1\not\vdots 4(1)$
Mặt khác:
Xét số dư của $n$ khi chia cho $5$
Nếu $n=5k+1$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+1)^2+5k+1+1=25k^2+15k+3=5(5k^2+3k)+3\not\vdots 5$
Nếu $n=5k+2$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+2)^2+5k+2+1=25k^2+25k+7=5(5k^2+5k+1)+2\not\vdots 5$
Nếu $n=5k+3$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+3)^2+5k+3+1=25k^2+35k+13=5(5k^2+7k+2)+3\not\vdots 5$
Nếu $n=5k+4$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+4)^2+5k+4+1=25k^2+45k+21=5(5k^2+9k+4)+1\not\vdots 5$
Vậy $n^2+n+1\not\vdots 5$
Vậy.......