Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hảo Hảo

Chứng minh rằng:  \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\frac{-3}{2}\)

Ngọc Vĩ
27 tháng 7 2015 lúc 21:47

có VT \(=\left(\frac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}-\frac{6\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}=\left(\frac{\sqrt{3}}{\sqrt{2}}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{-3\sqrt{3}}{\sqrt{2}}.\frac{1}{\sqrt{6}}=\frac{-3}{2}\)

dpcm

Anh Kiet Tram
27 tháng 7 2015 lúc 21:53

Ta có: \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)

  \(=\left\{\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}\right]-\frac{6\sqrt{6}}{3}\right\}\times\frac{1}{\sqrt{6}}\)

  \(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right)\times\frac{1}{\sqrt{6}}\)

  \(=\left(-\frac{3\sqrt{6}}{2}\right)\times\frac{1}{\sqrt{6}}\)

  \(=\frac{-3}{2}\)(đpcm)

  


Các câu hỏi tương tự
Tôm Tớn
Xem chi tiết
Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Songoku
Xem chi tiết
nguyen minh huyen
Xem chi tiết
Park Chanyeol
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
trungkien
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Liz Nguyen
Xem chi tiết