Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bao Nguyen Trong

Chứng minh rằng không tồn tại x thỏa mãn: \(x^4-x^3+2x^2-x+1=0\)

Pham Van Hung
2 tháng 12 2018 lúc 11:04

\(x^4-x^3+2x^2-x+1=0\)

\(\Rightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

Mà \(\hept{\begin{cases}x^2+1>0\forall x\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)>0\forall x}\)

Vậy ko tồn tại x thỏa mãn \(x^4-x^3+2x^2-x+1=0\)

Nguyệt
2 tháng 12 2018 lúc 11:05

\(x^4-x^3+2x^2-x+1=x^4-x^3+x^2+x^2-x+1\)

\(=x^2.\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2+1\right).\left(x^2-x+1\right)\)

vì (x2+1) \(\ge1\)

và \(x^2\ge x\Rightarrow x^2-x+1\ge1\)

=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge1\Rightarrowđpcm\)

Nguyệt
2 tháng 12 2018 lúc 11:09

đoạn này t sai r :(

\(x^2-x+1=x^2-\frac{2x.1}{2}+\frac{1}{2^2}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge\frac{3}{4}\)=> đpcm


Các câu hỏi tương tự
PHẠM THỊ THÁI HÀ
Xem chi tiết
Đinh Phương Thảo
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Unknow
Xem chi tiết
Duyên
Xem chi tiết
Nhiều chỵn
Xem chi tiết
Trần Thị Ngọc Như
Xem chi tiết
Nguyễn Minh Hiến
Xem chi tiết
Khánh Linh
Xem chi tiết