Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(\text{12x^2+ 26xy + 15y^2 = 4617}\)
Giúp mình bài này ạ:
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2√2−2x22−2x2=3√x+3√2−x
Chứng minh rằng không tồn tại các nghiệm nguyên khác không x, y, và z thoả mãn xn + yn = zn trong đó n là một số nguyên lớn hơn 2.
Chứng minh rằng không tồn tại các nghiệm nguyên khác không x, y, và z thoả mãn xn + yn = zn trong đó n là một số nguyên lớn hơn 2.
Chứng minh rằng: Không có bộ số nguyên tố nào thoả mãn đẳng thức
\(\left(x+y\right)^2-x^5=y^3-z^3\)
Giúp mình với TT
1. Tồn tại hay không các số hữu tỉ x,y thoả mãn x^2 + y^2 = 3
2. Tồn tại hay không các số hữu tủ x,y thoả mãn x^3 + 2y^3 = 4
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
chứng minh rằng không tồn tại cặp giá trị nguyên (x;y) thỏa mãn :\(x^2-2-2y^2=2011\)
chứng minh rằng không tồn tại các sô hữu tỉ x,y,z tỏa mãn x^2 + y^2 +z^2 + x + 3y +5z +7 =0