a, \(x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x^2+5x+\dfrac{25}{4}-\dfrac{25}{4}\right)+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}=0\)( vô lí )
b, \(3x^2-12x+6y^2-20y+40=0\)
\(\Leftrightarrow3\left(x^2-4x+4-4\right)+6\left(y^2-\dfrac{2.10}{6}+\dfrac{100}{36}-\dfrac{100}{36}\right)+40=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{10}{6}\right)^2+\dfrac{34}{3}=0\)( vô lí )
a: \(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+\dfrac{25}{2}+\dfrac{27}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{4}\right)^2+\dfrac{27}{2}=0\)(vô lý)
b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)
c) \(4x^2+3y^2-4x+30y+78=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+3\left(y^2+10y+25\right)+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\left(\cdot\right)\)
- Vì \(\left\{{}\begin{matrix}\left(2x-1\right)^2\ge0\forall x\\3\left(y+5\right)^2\ge0\forall y\end{matrix}\right.\Rightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2\ge2>0\forall x,y\)
\(\Rightarrow\left(\cdot\right)\) không thể xảy ra.
Vậy không có các số x,y nào thỏa mãn đẳng thức.