\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)( 1 )
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)( 1 )
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\) Và b+c+d khác 0. Chứng minh rằng \(\frac{a}{d}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
1.cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). chứng minh
a)\(\frac{a+b}{b}=\frac{c+d}{d}\) b)\(\frac{a-b}{b}\)=\(\frac{c-d}{d}\)
c)\(\frac{a+c}{c}=\frac{b+d}{d}\) d)\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).chứng minh
\(\frac{a-b}{c-d}=\frac{a+c}{b+d}\)
Cho \(b^2=ac\) ; \(c^2=bd\) . Chứng minh rằng:
a) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b) \(\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^2+8c^3+125d^3}\)
cho a b c d là các số thực khác 0 thỏa mãn \(\frac{a}{b}=\frac{c}{d}\) chứng minh
\(\left(\frac{a}{c}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
cho tỉ lệ thức: a,\(\frac{a+b}{c+d}\) = \(\frac{a-2b}{c-2d}\) (đk:b;d khác 0)
Chứng minh \(\frac{a}{b}\) = \(\frac{c}{d}\)
b, Cho a+d=b+c và a2 +d2 = b2 +c2 (b,d khác 0)
Chưng minh: 4 số a,b,c,d có thể lập thành 1 tỉ lệ thức
a)\(\frac{a+b}{b}=\frac{c+d}{d}\)
b)\(\frac{a-b}{b}=\frac{c-d}{d}\)
c)\(\frac{a+b}{a}=\frac{c+d}{c}\)
d)\(\frac{a-b}{a}=\frac{c-d}{c}\)
e)\(\frac{a}{a+b}=\frac{c}{c+d}\)
f)\(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\). Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\).