Gọi \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\)
\(4A=1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\)
\(4A-A=\left(1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\right)-\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\right)\)
\(3A=\left(1-\frac{1}{4^n}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4^n}\right):3\) hay \(A=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
Vậy \(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
mình rất cần bài toán này nhanh lên sửa lại cho mình nhé