Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)
Vậy khẳng định đúng với n=1.
Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)
Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:
\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)
\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)
\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)
Mà \(\left(m^3+3m^2+5m\right)⋮3\)
\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)
Do đó khẳng định đúng với n=m+1.
Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)
\(\forall n\ge1,n\in N\)
Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)
Vì n(n+1) (n+2) tích của 3 số tự nhiên liên tiếp
=> n( n+1) (n+2) chia hết cho 3
và 3n c hia hết cho 3
=> \(n^3+3n^2+5n\) chia hết cho 3