chứng minh rằng có hai số tự nhiên bất kì không thuộc một số phần tử các hợp chất trong mỗi phân số tự nhiên không tồn tại trong một số các phần tử trong hệ huong trình theo giả thiết
Cho tập A gồm các số tự nhiên có 1 chữ số. Số các tập con của A gồm hai phần tử, trong đó có phần tử 0 là:
A. 32
B. 34
C. 36
D. 9
Cho tập hợp X= {1;2;3;4;5;6;7;8;9}, chia tập hợp X thành 2 tập hợp khác rỗng và không có phần tử chung. Chứng minh rằng với mọi cách chia luôn tồn tại 3 số a,b,c trong một tập hợp thõa mãn a+c=2b
Cho phương trình: x(x-2)-(x+3)^2 + 1=0 Nghiệm của phương trình thỏa mãn điều kiện nào sao đây?
A. Là một số tự nhiên.
B. Là phần tử của tập hợp A = [-1;1]
C. Là phần tử của tập hợp B=[0;2]
D. Là một số thực không âm.
1. Cho tập \(X=\left\{1,2,...,n\right\}\), ở đó \(n\inℕ^∗\). Chứng minh rằng số các tổ hợp gồm \(r\) phần tử của \(X\) không chứa bất kì 2 phần tử liên tiếp nào là \(C^r_{n-r+1}\) với \(0\le r\le n-r+1\)
2. Một hoán vị \(x_1,x_2,...,x_{2n}\) của tập \(\left\{1,2,...,2n\right\}\) (với \(n\inℕ\)) được gọi là có tính chất \(T\) nếu \(\left|x_i-x_{i+1}\right|=n\) với ít nhất một chỉ số \(i\) thuộc tập \(\left\{1,2,...,2n-1\right\}\). Chứng minh rằng với mọi \(n\) , có nhiều hoán vị có tính chất \(T\) hơn là những hoán vị không có tính chất \(T\).
Giúp mình làm những bài này với. Mình nghĩ mãi vẫn không nghĩ ra lời giải nào thỏa đáng. Mình cảm ơn trước.
Với tập hợp X có hữu hạn phần tử, kí hiệu |X| là số phần tử của X. Cho A, B là hai tập hợp hữu hạn phần tử, sắp xếp các số | A | , | A ∪ B | , | A ∩ B | theo thứ tự không giảm, ta được:
A. | A ∩ B | , | A ∪ B | , | A |
B. | A | , | A ∩ B | , | A ∪ B |
C. | A ∩ B | , | A | , | A ∪ B |
D. | A ∪ B | , | A | , | A ∩ B |
Với tập hợp X có hữu hạn phần tử, kí hiệu | X | là số phần tử của X.
Cho A, B là hai tập hợp hữu hạn phần tử, sắp xếp các số | A ∪ B | , | A \ B | , | A | + | B | theo thứ tự không giảm, ta được:
A. | A \ B | , | A ∪ B | , | A | + | B |
B. | A ∪ B | , | A | + | B | , | A \ B |
C. | A ∪ B | , | A \ B | , | A | + | B |
D. | A | + | B | , | A ∪ B | , | A \ B |
Tập hợp các số tự nhiên có số phần tử là
A. 1.
B. Vô số.
C. Không có phần tử nào.
D. 10.
Liệt kê các phần tử của tập hợp A các ước số tự nhiên của 18 và của tập hợp các ước số tự nhiên của 30. Xác định các tập hợp A ∩ B, A ∪ B, A \ B, B \ A.