a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)
Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\)d bằng 1 hoặc d bằng 2
Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.