cho a,b,c là các số nguyên.Đặt P=(a+b)(b+c)(c+a)-abc
chứng minh rằng nếu (a+b+c) chia hết cho 4 thì P chia hết cho 4
Cho M = (a+b)(b+c)(c+a) - abc (với a,b,c là các số nguyên)
Chứng minh rằng: Nếu a+b+c chia hết cho 4 thì M chia hết cho 4
Cho biểu thức P =(a+b)(b+c)(c+a) - abc với a,b,c là các số nguyên. Chứng minh rằng nếu a+b+c chia hết cho 4 thì P chia hết cho 4.
Cho biếu thức A= (a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên .Chứng minh nếu a+b+c chia hết cho 4 thì A chia hết cho 4.
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Bài 1: cho a,b,c là số nguyên tố lớn hơn 3. Chứng minh (a-b(b-c)(c-a) chia hết cho 48.
Bài 2: cho các số nguyên dương a,b,c sao cho (a-b)(b-c)(c-a)=a+b+c. Chứng minh a+b+c chia hết cho 27.
Bài 3: Chứng minh rằng với mọi số nguyên tố lớn hơn p>3 thì 2018-2p^4 chia hết cho 96.
Cho 4 số nguyên phân biệt a,b,c,d. Chứng minh rằng : (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12