a/ Có: VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2
= a3 + b3 (=VT)
Vậy a3 + b3 = (a + b)3 - 3ab(a + b)
b/ tương tự
a/ Có: VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2
= a3 + b3 (=VT)
Vậy a3 + b3 = (a + b)3 - 3ab(a + b)
b/ tương tự
Chứng minh các đẳng thức:
a) a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) ;
b) a 3 − b 3 = ( a − b ) 3 + 3 ab ( a − b ) .
Chứng minh rằng: a3 – b3 = (a – b)3 + 3ab(a – b)
Chứng minh rằng: a3 + b3 = (a + b)3 – 3ab(a + b)
a) Chứng minh:
( A + B ) 3 = A 3 + B 3 + 3AB(A + B) và ( A - B ) 3 = A 3 - B 3 – 3AB(A – B)
b) Áp dụng tính:
i) 21 3 ; ii) 199 3 iii) 18 3 + 2 3 ; iv) 23 3 – 27.
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
Bài 5: Chứng minh:
a) a3 + b3 = a + b3 - 3ab (a + b)
cho a-b=1 chứng minh a3+b3-3ab=1
Cho a+b=1. Tính M= a3+b3+3ab(a3+b2)+6a2b2(a+b)
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs