Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sơn Tùng MTP

Chứng minh rằng :

A=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/6

 

Hoàng Phúc
11 tháng 5 2016 lúc 15:12

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

=>\(\frac{1}{3}A=\frac{1}{3^2}-\frac{2}{3^3}+\frac{3}{3^4}-\frac{4}{3^5}+....+\frac{99}{3^{100}}-\frac{100}{3^{101}}\)

=>\(\frac{1}{3}A+A=\frac{4}{3}A=\frac{1}{3}-\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+\left(\frac{3}{3^3}-\frac{2}{3^3}\right)+\left(\frac{4}{3^4}-\frac{3}{3^4}\right)+....+\left(\frac{99}{3^{99}}-\frac{98}{3^{99}}\right)+\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)

=>\(\frac{4}{3}A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+.....+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

Đặt \(S=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

=>\(\frac{1}{3}S=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+....+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)

=>\(\frac{1}{3}S+S=\frac{4}{3}S=\frac{1}{3}-\frac{1}{3^{101}}\Rightarrow S=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):\frac{4}{3}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{4}=\frac{1}{3}.\frac{3}{4}-\frac{1}{3^{101}}.\frac{3}{4}\)=>\(S=\frac{1}{4}-\frac{1}{3^{100}.4}\)

\(\frac{4}{3}A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+....+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

=>\(\frac{4}{3}A=\frac{1}{4}-\frac{1}{3^{100}.4}=\frac{1}{4}-\frac{1}{3^{100}}.\frac{1}{4}=\frac{1}{4}.\left(1-\frac{1}{3^{100}}\right)\)

=>\(A=\frac{1}{4}\left(1-\frac{1}{3^{100}}\right):\frac{4}{3}=\frac{1}{4}\left(1-\frac{1}{3^{100}}\right).\frac{3}{4}=\frac{1}{4}.\frac{3}{4}.\left(1-\frac{1}{3^{100}}\right)=\frac{3}{16}.\left(1-\frac{1}{3^{100}}\right)\)

\(1-\frac{1}{3^{100}}<1\Rightarrow A<\frac{3}{16}\)


Các câu hỏi tương tự
Thảo Fami
Xem chi tiết
Nguyễn Phương Ngân
Xem chi tiết
trần gia khánh
Xem chi tiết
Chirikatoji
Xem chi tiết
Thảo Fami
Xem chi tiết
Thu Phương
Xem chi tiết
*Nước_Mắm_Có_Gas*
Xem chi tiết
phạm quốc bảo
Xem chi tiết
Park Jimin
Xem chi tiết