Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Tu Nguyen

chứng minh rằng : \(38^n+1⋮39\) với mọi n là số lẻ

Hôm nay olm.vn sẽ hướng dẫn các em giải dạng toán lớp 8 nâng cao chuyên đề chứng minh một tổng chia hết cho một số, cấu trúc đề thi hsg, thi chuyên. Bằng phương pháp gián tiếp quy nạp toán học.

          Bước 1: Thông qua dư liệu đề bài, đưa về một yêu cầu mới tương đương với yêu cầu của đề bài, mà sau đó ta có thể dùng phương pháp quy nạp để chứng minh.

         Bước 2: dùng phương pháp quy nạp để chứng minh

        Bước 3: kết luận

38n + 1 ⋮ 39 ( ∀ n lẻ);    n lẻ ⇒ n = 2d + 1 ; d \(\in\) N

như vậy cm 38n + 1 ⋮ 39 \(\forall\) n lẻ nghĩa là cm : 382d + 1+ 1⋮ 39 ∀ d \(\in\) N

Ta có với d = 1 thì 382d+1 + 1 = 383 + 1 = 54873 ⋮ 39 (đúng)

Giả sử biểu thức đúng với d = k tức là: 382k+1 + 1 ⋮ 39

Ta cần chứng minh: biểu thức đúng với d = k + 1 

Tức là chứng minh: 382(k+1)+1 + 1 ⋮ 39 

Thật vậy ta có:   382(k+1)+1 + 1  = 382k+3  + 1  = 382k+1. 382 + 1

                 Vì      382k+1 + 1 ⋮ 39 

                 ⇒ 382k+1 \(\equiv\) -1 (mod 39)   (1)

                   382       \(\equiv\)  1 (mod 39)       (2)

                     1         \(\equiv\)   1 (mod 39 )  (3)

  Từ (1); (2); (3) ta có: 382k+1.382 + 1 \(\equiv\) (-1).1 + 1  (mod 39)

                                ⇒ 382k+1.382 + 1 \(\equiv\) 0 (mod 39 )

                                 ⇒ 382k+1.382 + 1 ⋮ 39 

Vậy : 382d+1 + 1 ⋮ 39 ∀ d \(\in\) N hay  38n + 1 ⋮ 39 với \(\forall\) n lẻ (đpcm)

ミ★Zero ❄ ( Hoàng Nhật )
29 tháng 7 2023 lúc 15:52

Cũng có thể CM bằng cách sử dụng t/c của hằng đẳng thức :

TQ : \(a^n+b^n⋮a+b\) ( a,b là các số nguyên , \(a\ne-b\) , n lẻ )

Ta có : \(38^n+1=38^n+1^n⋮38+1=39\left(đpcm\right)\)


Các câu hỏi tương tự
Lăng Thu Hương
Xem chi tiết
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Cô nàng giấu tên
Xem chi tiết
Kị tử thần
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyên Lê
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Nguyễn Lê Đông Anh
Xem chi tiết
tống châu
Xem chi tiết