Ko bt đúng ko .
Đặt A=1.2+2.3+3.4+...+n(n+1)
A=1.2+2.3+3.4+...+n(n+1)
=>3A=(3−0)1.2+(4−1)2.3+...+(n+2−n+1)n(n+1)=>3A=(3−0)1.2+(4−1)2.3+...+(n+2−n+1)n(n+1)
=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)
=>3A=n(n+1)(n+2)=>3A=n(n+1)(n+2)
=>A=n(n+1)(n+2)3=>A=n(n+1)(n+2)3 (đpcm)