A) Cho a>0 , b>0. Cmr : a+b >=2√ab . Dấu = xảy ra khi nào?
B) Cho biết x>2 , cmr : x + 4/x - 2 >= 6 . Dấu = xảy ra khi nào?
C) Cho a, b>0 , chứng minh (a+b) (1/a + 1/b) >= 4. Dấu = xảy ra khi nào?
Bài 3 : (3đ)
1. Chứng minh rằng với hai số thực bất kì a,b ta luôn có : \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Dấu bằng xảy ra khi nào ?
2. Cho ba số thực a,b,c không âm sao cho \(a+b+c=1\)
Chứng minh : \(b+c\ge16abc\) . Dấu bằng xảy ra khi nào ?
Nhân tiện em cũng hỏi luôn là tại sao khi em đăng bài mặc dù em đã điền đủ lớp môn ; mạng không lag mà sao vẫn không thể đăng bài được . Em phải mất tận 2 lần ghi lại đề bài mới có thể đăng bài được.
Cho \(a,b,c>0\)
CMR :\(\frac{a^4}{b\left(b+c\right)}+\frac{b^4}{c\left(c+a\right)}+\frac{c^4}{a\left(a+b\right)}\ge\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng bđt Svac-xo ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Dấu "-" xảy ra \(< =>a=b=c\)
Chứng minh : a^4 + b^4 + c^2 + 1 > 2(ab+bc+ca)
Cho a, b, c là các số dương thoả mãn a2 + b2 + c2 = 1. Chứng minh rằng:
\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge\sqrt{3}\)
Dấu "=" xảy ra khi nào?
a. chứng minh rằng a2 +ab+b2 > hoặc = 0 với mọi a.b dấu = xảy ra khi nào
b. a2 - ab + b2 > hoặc = với mọi a.b dấu bằng xảy ra khi nào
Chứng minh:
a) (a+b+c)^2+(a+b-c)^2+(a-b+c)^2+(b+c-a)^2=4(a^2+b^2+c^2)
b) (ab+bc+ca)^2+(a^2-bc)+(b^2-ca)+(c^2-ab)=(a^2+b^2+c^2)^2
cho a+b+c=0 chứng minh a^4+b^4+c^4=2(ab+bc+ca)^2
chứng minh a^4+b^4+c^4=2*(ab+bc+ca)^2 biết a+b+c=0