Q= 2x^2 + 9y^2 - 6xy + 2x +11
= x^2 - 6xy + 9y^2 + x^2 + 2x +1 +10
= (x-3y)^2 + (x+1)^2 +10
Ta có: (x-3y)^2 >/ 0
(x+1)^2 >/ 0
10 > 0
Vậy Q luôn có giá trị dương với mọi x và y.
\(=\left(x^2-6xy+9y^2\right)+\left(x^2+2x+1\right)+10\)\(=\left(x-3y\right)^2+\left(x+1\right)^2+10\ge10\)
Dấu ''='' xảy ra khi x=-1 và y=-1/3