\(=\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\left(sin^2x+cos^2x\right)-sin^4x-cos^4x-sin^4x+sin^2x\)
\(=1-3sin^2xcos^2x-\left(sin^2x+cos^2x\right)^2+2sin^2x\cdot cos^2x-sin^2x\left(sin^2x-1\right)\)
\(=-sin^2x\cdot cos^2x-sin^2x\cdot\left(-cos^2x\right)=0\)