Cop mạng cũng đc
tick hết
Hãy chứng minh rằng: Với một tam giác đều cố định và một điểm bất kì nằm trong tam giác đều đó thì tổng các khoảng cách từ điểm đó đến 3 cạnh của tam giác đều là không đổi.
1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.
2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.
3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.
4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.
5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai
a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4
6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ
7. Cho các số a, b, c thỏa mãn các điều kiện:
{ a+ b+ c> 0 (1)
{ ab + bc + ca > 0 (2)
{ abc > 0 ( 3)
CMR : cả ba số a, b, c đều dương
8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".
9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.
Chứng minh rằng trong một tam giác ABC bất kì, đường tròn ngoại tiếp chia đoạn IK nối tâm I của đường tròn nội tiếp và tâm K của đường tròn bàng tiếp trong góc A, thành 2 phần bằng nhau.
Hãy chứng minh rằng: Với một tam giác đều cố định và một điểm bất kì nằm trong tam giác đều đó thì tổng các khoảng cách từ điểm đó đến 3 cạnh của tam giác đều là không đổi.
Cho một tam giác đều 15 cạnh. Chứng minh rằng khi chọn ra 7 điểm bất kỳ trong số 15 điểm trên thì luôn có 3 đỉnh là đỉnh của 1 tam giác cân.
Cho tam giác ABC cân tại A . Lấy điểm M bất kì phía trong tam giác sao cho góc AMB> góc AMC. Chứng minh MB>MC
Sắp thi rồi
Cop mạng cũng đc
Nêu cách chia một tứ giác lồi bất kì thành 2 phần có diện tích bằng nhau. Giải thích cách làm nếu được (tức là chứng minh)
TOÁN RỜI RẠC
1. Cho tam giác ABC có độ dài các đường phân giác trong nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{1}{\sqrt{3}}\)
2.Cho n số nguyên dương đôi một khác nhau. Tìm giá trị nhỏ nhất của n để tổng của 3 số bất kì trong n số luôn là 1 số nguyên tố
3. Một hình chữ nhật có kích thước 3x4 được chia thành 12 hình vuông đơn vị bởi các đường thẳng song song với cạnh.
- Chứng minh rằng với 7 điểm bất kì nằm trong hình chữ nhật luôn có thể chọn ra 2 điểm có khoảng cách không vượt quá \(\sqrt{5}\)
- Chứng minh rằng kết luận của bài toán vẫn đúng khi số điểm là 6 và sai khi số điểm là 5.
Trên mặt phẳng cho 17 điểm trong đó 3 điểm nào cũng nối được với nhau tạo thành 1 tam giác có cạnh được tô bởi một trong 3 màu xanh , đỏ hoặc vàng .
cmr tồn tại một tam giác có ba cạnh bằng nhau