a: \(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)
\(=a^3+b^3+3ab\left(a+b\right)\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot2\cdot\left(-3\right)\)
=27+9x2=45
\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow\left(-3\right)^3=a^3+b^3+3.2.\left(-3\right)\)
\(\Leftrightarrow-27=a^3+b^3-18\)
\(\Leftrightarrow a^3+b^3=-9\)